

Question		Answer	Marks	Guidance
(c)	(ii)	H^{+}reacts with CN^{-}OR HCN forms OR equation: $\mathrm{H}^{+}+\mathrm{CN}^{-} \rightarrow \mathrm{HCN}($ ALLOW $\rightleftharpoons)$ OR CN ${ }^{-}$accepts a proton $/ \mathrm{H}^{+}$ OR equilibrium shifts right AND CN^{-}is removed \checkmark	1	ALLOW Acid reacts with/removes OH^{-}ions (to form HCN) ALLOW CNH (i.e. any order) IGNORE other equilibrium comments
(d)	(i)	Fuel reacts with oxygen/oxidant to give electrical energy/voltage \checkmark	1	ALLOW named fuel. e.g. hydrogen $/ \mathrm{H}_{2}$; ethanol; methanol, etc ALLOW fuel cell requires constant supply of fuel AND oxygen/an oxidant OR fuel cell operates continuously as long as a fuel AND oxygen/an oxidant are added IGNORE 'reactants' 'products' and comments about pollution and efficiency
(d)	(ii)	ethanol is a liquid OR is less volatile OR ethanol is easier to store/transport/stored more safely OR hydrogen is explosive/more flammable OR ethanol has more public/political acceptance \checkmark	1	Assume that 'it' refers to ethanol ALLOW ORA throughout IGNORE ethanol has a higher boiling point IGNORE H_{2} is a gas IGNORE 'produces no CO_{2} ' OR less pollution IGNORE comments about efficiency IGNORE comments about biomass and renewable
(d)	(iii)	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O} \checkmark$	1	Correct species AND balancing needed ALLOW multiples ALLOW $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ for formula of ethanol IGNORE state symbols
(d)	(iv)	$\mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O} \checkmark$	1	Correct species AND balancing needed ALLOW multiples, e.g. $3 \mathrm{O}_{2}+12 \mathrm{H}^{+}+12 \mathrm{e}^{-} \rightarrow 6 \mathrm{H}_{2} \mathrm{O}$ $2+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}$ ALLOW e (ie no \pm /2gign) ALLOW $\quad \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{e}^{-} \rightarrow 4 \mathrm{OH}^{-}$ $\mathrm{OR} 3 \mathrm{O}_{2}+6 \mathrm{H}_{2} \mathrm{O}+12 \mathrm{e}^{-} \rightarrow 12 \mathrm{OH}^{-}$ IGNORE state symbols

Question	Answer	Marks	Guidance
(d) (v)	oxidation: C from -2 to $+4 \quad$ '+' sign not required \checkmark reduction: O from 0 to -2	2	ALLOW 2- and 4+ ALLOW $\mathrm{C}^{2-} \rightarrow \mathrm{C}^{4+}$ ALLOW 0 and 2- ALLOW $\mathrm{O}^{0} \rightarrow \mathrm{O}^{2-}$ ALLOW 1 mark if correct oxidation numbers shown for BOTH C and O but wrong way around (ie C on reduction line and O on oxidation line) IGNORE O_{2} reduced IGNORE any reference to electron transfer (not in question)
	Total	13	

	esti	Answer	Marks	Guidance
2	(a)	Equations can be in either order $\mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH} \downarrow$ $\mathrm{NaFeO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}(\mathrm{OH})_{3}+\mathrm{NaOH} \checkmark$	2	ALLOW multiples throughout IGNORE state symbols $\text { ALLOW } \mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Na}^{+}+2 \mathrm{OH}^{-}$ DO NOT ALLOW equations with uncancelled species. $\text { e.g. } \mathrm{Na}_{2} \mathrm{O}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{O}$ ALLOW $2 \mathrm{NaFeO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}+2 \mathrm{NaOH}$ $\text { OR } \quad 2+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}+2 \mathrm{Na}^{+}+2 \mathrm{OH}^{-}$

Question	Answer	Marks	Guidance
(c)	Overall: $4^{2-}+3 \mathrm{I}^{-}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Cr}^{3+}+11 / 2 \mathrm{I}_{2}+8 \mathrm{OH}^{-} \checkmark$ CrO Half equations: $4^{2-}+4 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{e}^{-} \rightarrow \mathrm{Cr}^{3+}+8 \mathrm{OH}^{-} \checkmark$ CrO $2 \mathrm{I}^{-} \rightarrow 12+2 \mathrm{e}^{-} \checkmark$	3	ALLOW multiples and equilibrium signs throughout IGNORE state symbols throughout $\text { e.g. } 2 \mathrm{CrO}_{4}^{2-}+6 \mathrm{I}^{-}+8 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Cr}^{3+}+3 \mathrm{I}_{2}+16 \mathrm{OH}^{-}$ ALLOW equation using H^{+}. i.e. OR $\begin{gathered} \mathrm{CrO}_{4}^{4-}+3 \mathrm{CrO}^{2-}+8 \mathrm{H}^{+} \rightarrow \mathrm{Cr}^{3+}+\mathrm{Cl}^{+1 / 2 \mathrm{I}_{2}}+16 \mathrm{H}^{+} \rightarrow 2 \mathrm{Cr}^{3+}+3 \mathrm{H}_{2} \mathrm{O} \\ +8 \mathrm{H}_{2} \mathrm{O} \end{gathered}$ ALLOW $\mathrm{CrO}_{4}{ }^{2-}$ half equation using H^{+}. i.e. $4^{2-}+8 \mathrm{H}^{+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Cr}^{3+}+4 \mathrm{H}_{2} \mathrm{O}$ CrO
	Total	11	

Question			Answer	Marks	Guidance
3	(a)		Definition The e.m.f. (of a half-cell) compared with/connected to a (standard) hydrogen half-cell/(standard) hydrogen electrode \checkmark Standard conditions Units essential Temperature of $298 \mathrm{~K} / 25^{\circ} \mathrm{C}$ AND (solution) concentrations of $1 \mathrm{~mol} \mathrm{dm}^{-3}$ AND pressure of 100 kPa OR $10^{5} \mathrm{~Pa}$ OR $1 \mathrm{bar} \checkmark$	2	As alternative for e.m.f., ALLOW voltage OR potential difference OR p.d. OR electrode potential OR reduction potential OR redox potential ALLOW /(standard) hydrogen cell IGNORE S.H.E. (as abbreviation for standard hydrogen electrode) ALLOW 1M DO NOT ALLOW 1 mol ALLOW 1 atmosphere/1 atm OR 101 kPa OR 101325 Pa
	(b)	(i)	$2 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s}) \rightarrow 2 \mathrm{Ag}(\mathrm{s})+\mathrm{Cu}^{2+}(\mathrm{aq})^{\checkmark}$	1	State symbols not required ALLOW \rightleftharpoons provided that reactants on LHS
	(b)	(ii)	Assume $\mathrm{Cu}^{2+} \mid \mathrm{Cu}$ OR Cu half cell unless otherwise stated. $\left[\mathrm{Cu}^{2+}\right]$ decreases $\mathbf{O R}<1 \mathrm{~mol} \mathrm{dm}^{-3}$ AND Equilibrium (shown in table) shifts to left more electrons are released by $\mathrm{Cu} \checkmark$ The cell has a bigger difference in E	3	FULL ANNOTATIONS MUST BE USED ALLOW $\left[\mathrm{Cu}^{2+}\right]$ less than standard concentration $/ 1 \mathrm{~mol} \mathrm{dm}^{-3}$ DO NOT ALLOW water reacts with $\mathrm{Cu}^{2+} \mathrm{ORCu}$ ALLOW E (for $\mathrm{Cu}^{2+} \mid \mathrm{Cu}$) is less positive / more negative /decreases IGNORE standard electrode potential (Cell no longer standard) IGNORE E° decreases CARE DO NOT ALLOW statements about silver E changing (CON) IGNORE just 'cell potential increases' (in the question) The final mark is more subtle and is a consequence of the less positive E value of the copper half cell

(c)	(i)	no/less $\mathrm{CO}_{2} \mathbf{O R ~} \mathrm{H}_{2} \mathrm{O}$ is only product OR greater efficiency \checkmark	1	IGNORE less pollution IGNORE less carbon emissions IGNORE less fossil fuels used IGNORE no/less greenhouse gas OR no global warming ($\mathrm{H}_{2} \mathrm{O}$ vapour is a greenhouse gas)
(c)	(ii)	liquefied/as a liquid AND under pressure/pressurised \checkmark	1	IGNORE adsorption or absorption IGNORE low temperature DO NOT ALLOW liquidise processes are described in the question
(d)	(i)	$E=-2.31(\mathrm{~V}) \checkmark$	1	- sign AND 2.31 required for the mark
(d)	(ii)	$\begin{aligned} & 4 \mathrm{Al}(\mathrm{~s})+4 \mathrm{OH}^{-}(\mathrm{aq})+3 \mathrm{O}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow 4 \mathrm{Al}(\mathrm{OH})_{4}^{-}(\mathrm{aq}) \\ & \text { species } \checkmark \\ & \text { balance } \checkmark \end{aligned}$	2	IGNORE state symbols ALLOW multiples ALLOW 1 mark for an equation in which OH^{-}are balanced but have not been cancelled, e.g. $4 \mathrm{Al}(\mathrm{~s})+16 \mathrm{OH}^{-}(\mathrm{aq})+3 \mathrm{O}_{2}(\mathrm{~g})+\underset{4 \mathrm{Al}(\mathrm{OH})_{4}(\mathrm{aq})+12 \mathrm{OH}^{-}(\mathrm{aq})}{6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})} \rightarrow$ ALLOW 1 mark if charge on $\mathrm{Al}(\mathrm{OH})_{4}$ is omitted, i.e $4 \mathrm{Al}(\mathrm{~s})+4 \mathrm{OH}^{-}(\mathrm{aq})+3 \mathrm{O}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow 4 \mathrm{Al}(\mathrm{OH})_{4}(\mathrm{aq})$ ALLOW 1 mark for an 'correct equation' reversed, i.e. $4 \mathrm{Al}(\mathrm{OH})_{4}^{-}(\mathrm{aq}) \rightarrow 4 \mathrm{Al}(\mathrm{~s})+4 \mathrm{OH}^{-}(\mathrm{aq})+3 \mathrm{O}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
		Total	11	

Question		Answer	Marks	Guidance
4	(a)	$\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{Cl}_{2}+10 \mathrm{OH}^{-} \rightarrow 2 \mathrm{FeO}_{4}{ }^{2-}+6 \mathrm{Cl}^{-}+5 \mathrm{H}_{2} \mathrm{O} \checkmark \checkmark$ First mark for all 6 species Second mark for balancing	2	ALLOW multiples ALLOW oxidation half equation for two marks $\mathrm{Fe}_{2} \mathrm{O}_{3}+10 \mathrm{OH}^{-} \rightarrow 2 \mathrm{FeO}_{4}{ }^{2-}+5 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{e}^{-}$ Correct species would obtain 1 mark - question: equation for oxidation ALLOW variants forming H^{+}for 1 mark, e.g: $\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{Cl}_{2}+5 \mathrm{OH}^{-} \rightarrow 2 \mathrm{FeO}_{4}^{2-}+6 \mathrm{Cl}^{-}+5 \mathrm{H}^{+}$ $\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{Cl}_{2}+5 \mathrm{OH}^{-} \rightarrow 2 \mathrm{FeO}_{4}^{2-}+5 \mathrm{HCl}+\mathrm{Cl}^{-}$
	(b)	$\mathrm{Ba}^{2+}(\mathrm{aq})+\mathrm{FeO}_{4}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{BaFeO}_{4}(\mathrm{~s}) \checkmark$	1	Balanced ionic equation AND state symbols required DO NOT ALLOW +2 or -2 for ionic charges
	(c)	Reason can ONLY be correct from correct reducing agent reducing agent. I^{-}OR KI I- adds/donates/loses electrons AND to $\mathrm{FeO}_{4}{ }^{2-} \mathrm{OR}$ to $\mathrm{BaFeO}_{4} \mathrm{OR}$ to $\mathrm{Fe}(\mathrm{VI})$ or to $\mathrm{Fe}(+6) \checkmark$ ALLOW Fe(6+) OR Fe ${ }^{6+}$	2	IGNORE H^{+}OR acidified ALLOW iodide/potassium iodide but DO NOT ALLOW iodine ALLOW I ${ }^{-}$loses electrons AND to form I_{2} ALLOW Fe(6+) OR Fe ${ }^{6+}$

(e)	gas: $\mathrm{O}_{2} \checkmark$ precipitate: $\mathrm{Fe}(\mathrm{OH})_{3} \checkmark$ equation: $2 \mathrm{FeO}_{4}{ }^{2-}+5 \mathrm{H}_{2} \mathrm{O} \quad \rightarrow 1 \frac{1}{2} \mathrm{O}_{2}+2 \mathrm{Fe}(\mathrm{OH})_{3}+4 \mathrm{OH}^{-}$ $\mathrm{OR} 2 \mathrm{FeO}_{4}{ }^{2-}+\mathrm{H}_{2} \mathrm{O}+4 \mathrm{H}^{+} \rightarrow 11 / \mathrm{O}_{2}+2 \mathrm{Fe}(\mathrm{OH})_{3}$	3	DO NOT ALLOW names IGNORE a balancing number shown before a formula ALLOW Fe(OH) $)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$ ALLOW multiples ALLOW $2 \mathrm{FeO}_{4}^{2-}+11 \mathrm{H}_{2} \mathrm{O} \rightarrow 1 \frac{1}{2} \mathrm{O}_{2}+2 \mathrm{Fe}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}+4 \mathrm{OH}^{-}$
	Total	12	

